
1.)

a.)

The Lagrangian is given by:

L =
1

2
m
(
ẋ2 + ẏ2

)
−mgy

(1)

We can write the x and y components in terms of the angle, θ, and and the
driving term:

y = l(1− cos(θ)) (2)

x = l sin(θ) + x0 cos(ωt) (3)

Taking the time derivate of Eq (1) and (2) and plugging into the Lagrangian:

L =
1

2

(
l2θ̇2 − 2lωx0θ̇ cos θ sin(ωt) + ω2x2

0 sin2(ωt)
)
−mgl(1− cos(θ))

Keeping only terms to the first power of ω, we can find the equation of motion
for θ:

d

dt

(
∂L

∂θ̇

)
=
∂L

∂θ

d

dt

[
ml2θ̇ −mlωx0 cos(θ) sin(ωt)

]
= −mgl sin(θ) +mωlx0θ̇ sin(θ) sin(ωt)

ml2θ̈ +((((
(((

(((
mlωx0θ̇ sin(θ) sin(ωt)−mlω2x0 cos(θ) cos(ωt) = −mgl sin(θ) +((((

(((
(((

mωlx0θ̇ sin(θ) sin(ωt)

ml2θ̈ = −mgl sin(θ) +mlω2x0 cos(θ) cos(ωt)

θ̈ = −g
l

sin(θ) +
ω2x0

l
cos(θ) cos(ωt) (4)

We now assume that the motion, θ(t), can be separated into fast and slow
components: θ = θ̄ + Θ̃. I will use the notation that θ̄ corresponds to the slow
motion while Θ̃ corresponds to the fast motion. We now plug our definition of
θ into Eq. (4) and expand in powers of Θ̃:

¨̄θ + ¨̃Θ = −g
l

sin(θ̄ + Θ̃) +
ω2x0

l
cos(θ̄ + Θ̃) cos(ωt)

= −g
l

sin(θ̄)︸ ︷︷ ︸
1

− g

l
Θ̃ cos(θ̄)︸ ︷︷ ︸

2

+
ω2x0

l
cos(θ̄) cos(ωt)︸ ︷︷ ︸

3

− ω2x0

l
Θ̃ sin(θ̄) cos(ωt)︸ ︷︷ ︸

4

We can now average over the fast period. By doing so, all of the ”fast” terms
in the above equation will be approximately zero. We can see that term 1 is a
slow term as well as term 4. Term 4 is slow due to the beat phenomenon, which
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we will see from the multiplication of Θ̃ and cos(ωt) in this term. Terms 2 and
3 are fast terms and will go to zero under averaging.

< ¨̄θ >= −g
l
< sin(θ̄) > −ω

2x0

l
< Θ̃ cos(ωt) > sin(θ̄) (5)

Switching over to the fast components:

¨̃Θ =���
���−g

l
Θ̃ cos(θ̄) +

ω2x0

l
cos(θ̄) cos(ωt)

The first term went to zero as Ω2 << ω2, where Ω is just the natural freq of
the oscillator,

√
g/l We can integrate this equation with respect to time twice,

arriving at:

Θ̃ = −x0

l
cos(θ̄) cos(ωt) (6)

We plug this expression for Θ̃ into Eq (5) to see:

< Θ̃ cos(ωt) >= −ω
2x0

l
< −x0

l
cos(θ̄) cos(ωt) cos(ωt) > sin(θ̄)

< Θ̃ cos(ωt) >= +
ω2x2

0

l2
< cos2(ωt) > cos(θ̄) sin(θ̄) (7)

The average of cos2(ωt) can be computed:

< cos2(ωt) >=
1

T

∫ T

0

(
1

2
+

1

2
cos(2ωt)

)
dt =

1

2

And so:

< ¨̄θ >= ¨̄θ = −g
l

sin(θ̄) +
ω2x2

0

2l2
cos(θ̄) sin(θ̄) (8)

We can write Eq (8) in the form: ẍ = − d
dx (U), where U is the potential:

¨̄θ = − d

dθ̄

[
−g
l

cos(θ̄)− x2
0ω

2

4l2
sin2 θ̄

]
(9)

Eq (9) tells us then there the effective potential is:

Ueff = −g
l

cos(θ̄)− x2
0ω

2

4l2
sin2 θ̄ (10)

Our goal is to find the extrema of this function Using a trig identity to reduce
the power of sin2(θ̄) term and taking a spatial derivative:

dUeff

dθ̄
=
g

l
sin(θ̄)− x2

0ω
2

4l2
sin(2θ̄) = 0

dUeff

dθ̄
=

(
g

l
− x2

0ω
2

2l2
cos(θ̄)

)
sin(θ̄)

θ̄ = 0 or π or arccos

(
2gl

x2
0ω

2

)
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The stability of these extrema are found by taking another spacial derivative.

d2Ueff

dθ̄2
=
g

l
cos(θ̄)− x2

0ω
2

2l2
cos(2θ̄)

For θ̄ = 0

d2Ueff

dθ̄2

∣∣∣∣
θ̄=0

=
g

l
− x2

0ω
2

2l2
(11)

Which is positive, and thus stable, if g
l >

x2
0ω

2

2l2 .
For θ̄ = π

d2Ueff

dθ̄2

∣∣∣∣
θ̄=π

= −g
l
− x2

0ω
2

2l2
(12)

Which is always negative, and thus always unstable.

For θ̄ = arccos
(

2gl
x2
0ω

2

)
:

d2Ueff

dθ̄2
=
g

l
cos(θ̄)− x2

0ω
2

2l2
[
2cos2(θ̄)− 1

]
and evaluating at this point:

d2Ueff

dθ̄2

∣∣∣∣
θ̄

=
g

l

(
2gl

x0ω2

)
− x2

0ω
2

2l2

[
2

(
2gl

x2
0ω

2

)2

− 1

]
d2Ueff

dθ̄2

∣∣∣∣
θ̄

= − 2g2

x2
0ω

2
+
x2

0ω
2

2l2

Which is stable if:

x2
0ω

2

2l2
>

2g2

x2
0ω

2

Thus we finally have:

θ̄ = 0 is a stable equilibrium point if
g

l
>
x2

0ω
2

2l2

and

θ̄ = arccos

(
2gl

x2
0ω

2

)
is a stable equilibrium point if

x2
0ω

2

2l2
>

2g2

x2
0ω

2

While θ̄ = π is always unstable.

3



b.)

We can write the x and y components as:

x = l sin(θ) + r0 cos(ωt)

y = l cos(θ) + r0 sin(ωt)

Plugging this into our usual Lagrangian for a pendulum:

L =
1

2
m
[
(lθ̇ cos(θ)− r0ω sin(ωt))2 + (r0ω cos(ωt)− l sin(θ)θ̇)2

]
−mgl(1− cos(θ)

L =
1

2
m
[
l2θ̇2 + r2

0ω
2 − 2r0ωlθ̇ sin(ωt) cos(θ)− 2r0ωlθ̇ cos(ωt) sin(θ)

]
−mgl(1− cos(θ))

We can now find the equations of motion:

d

dt

[
∂L

∂θ̇

]
=
∂L

∂θ

ml2θ̈ − r0ωlm
(
ω cos(ωt) cos(θ)− θ̇ sin(ωt) sin(θ)− ω sin(ωt) sin(θ) + θ̇ cos(ωt) cos(θ)

)
= −mgl sin(θ) + r0ωlθ̇m (sin(ωt) sin(θ)− cos(ωt) cos(θ))

(13)

We keep only to first order in ω, dropping all higher order terms. Several
terms cancel, are we are left with:

ml2θ̈ = −mgl sin(θ) + r0ω
2lm(cos(ωt) cos(θ)− sin(ωt) sin(θ))

θ̈ = −g
l

sin(θ) +
r0ω

2

l
(cos(ωt) cos(θ)− sin(ωt) sin(θ)) (14)

As in the previous problem, we assume we can write θ = θ̄ + Θ̃ where θ̄ is the
slow component and Θ̃ is the fast component. Plugging this into Eq (14) and
expanding in powers of Θ̃:

¨̄θ + ¨̃Θ = −g
l
(sin(θ̄)− Θ̃ cos(θ̄)) +

r0ω
2

l

(
(cos(θ̄)− Θ̃ sin(θ̄)) cos(ωt)− (sin(θ̄) + Θ̃ cos(θ̄)) sin(ωt)

)
We can average over the fast time scale, as before, which will leave only the
slow components. The fast components will be averaged to zero:

¨̄θ = −g
l

sin(θ̄)− r0ω
2

l

(
< Θ̃ cos(ωt) > sin(θ̄)+ < Θ̃ sin(ωt) > cos(θ̄)

)
(15)

Switching over to the fast components:

¨̃Θ =��
���

�−g
l
Θ̃ cos(θ̄) +

r0ω
2

l

(
cos(θ̄) cos(ωt)− sin(θ̄) sin(ωt)

)
(16)
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We can easily integrate Eq (16) and find an expression for Θ̃:

Θ̃ = −r0

l

(
cos(θ̄) cos(ωt)− sin(θ̄) sin(ωt)

)
(17)

Plugging in this expression into the Eq (15) we can calculate the <> terms.
To save some computation, we know that any averaging term proportional to
sin(ωt) cos(ωt) will average to zero. Likewise, as seen above in part a), any term
proportional to sin2(ωt) or cos2(ωt) will average to 1/2. Simplifying, we arrive
at:

¨̄θ = −g
l

sin(θ̄)− r2
0ω

2

l2

(
1

2
sin(θ̄) cos(θ̄)− 1

2
sin(θ̄) cos(θ̄)

)
¨̄θ = −g

l
sin(θ̄) (18)

Our effective potential is thus:

Ueff = −g
l

cos(θ̄)

and the system behaves as if there is NO motion of the pivot point. This gives
us the final result of the equilibrium position:

dUeff

dθ̄
=
g

l
sin(θ̄) = 0 when θ̄ = 0 or π

d2Ueff

dθ̄2
=
g

l
cos(θ̄)

∣∣∣∣
θ̄=0

> 0 always

d2Ueff

dθ̄2
=
g

l
cos(θ̄)

∣∣∣∣
θ̄=π

< 0 always

θ̄ = 0 is a stable equilibrium point.

θ̄ = π is an unstable equilibrium point.

2.)

We are given that the support is driven with y(t) = y0 cos(ωt). We begin by
finding the Lagrangian:

L =
1

2m
(ẋ2 + ẏ2)−mgy

Writing x and y in terms of the angle θ of the pendulum:

x = l sin(θ)

y = l cos(θ) + y0 cos(ωt)

5



We can plug this into the Lagrangian to get:

L =
1

2m

[
l2θ̇2 + 2ly0ωθ̇ sin(θ) sin(ωt)

]
−mgl(1− cos(θ))

The equations of motion are therefore:

��ml
2θ̈ +��mly0ω

2 sin(θ) cos(ωt) +((((
(((

(((
mly0ωθ̇ cos(θ) sin(ωt) = −��mgl sin(θ) +((((

(((
(((

mly0ωθ̇ cos(θ) sin(ωt)

θ̈ +
g

l
sin θ +

y0ω
2

l
sin(θ) cos(ωt) = 0

If we set ω2
0 = g/l:

θ̈ + ω2
0

[
1 +

y0ω
2

g
cos(ωt)

]
sin(θ) = 0

We are given that the driving frequency, ω = 2ω0 + ε. Thus we can write
the above equation as:

θ̈ + ω2
0

[
1 +

4y0

l
cos(ωt)

]
sin θ

We have used the fact that ω2 = (2ω0 + ε)2 = 4ω2
0 + 4ω0ε + ε2 ≈ 4ω2

0 to first
order in ε. A final approximation, the small angle approximation, and letting
h = 4y0/l gives us the final equation:

θ̈ + ω2
0 [1 + h cos(ωt)] θ = 0 (19)

We can approach this problem but first finding solutions when h=0. This is
nothing but the S.H.O, with solution:

θ(t) = a cos(ω0t) + b sin(ω0t)

When we let h 6= 0, we expect the same general form of the solution except for
a slow time scale variation of the coefficients.

θ(t) = a(t) cos((ω0 +
ε

2
)t) + b(t) sin((ω0 +

ε

2
)) (20)

Plugging this equation for θ into Eq (19), and using (ω0 + ε
2 ) = β:

ä cos(βt)− 2βȧ sin(βt)− β2a cos(βt) + b̈ sin(βt) + 2ḃβ cos(βt)− bβ2 sin(βt)

= −ω2
0 [1 + h cos(ωt)] (a cos(βt) + b sin(βt))

Dropping the terms proportional to ä and b̈:

−β2a cos(βt)− 2βȧ sin(βt) + 2ḃβ cos(βt)− bβ2 sin(βt)

= −ω2
0 [1 + h cos(ωt)] (a cos(βt) + b sin(βt))
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We now notice that β2 = ω2
0 + ω0ε+O(ε2):

−(��ω
2
0 + ω0ε)a cos(βt)− 2βȧ sin(βt) + 2ḃβ cos(βt)− b(��ω

2
0 + ω0ε) sin(βt)

= −ω2
0

[
�1 + h cos(ωt)

]
(a cos(βt) + b sin(βt))

Or after some rearranging:

−ω0ε (a cos(βt) + b sin(βt))− 2β
(
ȧ sin(βt)− ḃ cos(βt)

)
+ω2

0h
[
a cos((2ω0 + ε)t) cos(ω0 +

ε

2
) + b cos((2ω0 + ε)t) sin(ω0 +

ε

2
)
]

= 0

We use some trig identities to rewrite the terms in brackets in the above equa-
tion:

cos((2ω0 + ε)t) cos(ω0 +
ε

2
) =

1

2
cos((ω0 +

ε

2
)t)− 1

2
cos((3ω0 +

3ε

2
)t)

cos((2ω0 + ε)t) sin(ω0 +
ε

2
) = −1

2
sin((ω0 +

ε

2
)t) +

1

2
sin((3ω0 +

3ε

2
)t)

We only keep terms on resonance, dropping the third harmonic terms, which
allows us to write:

−ω0ε (a cos(βt) + b sin(βt))− 2β
(
ȧ sin(βt)− ḃ cos(βt)

)
+ω2

0h [a cos(βt)− b sin(βt)] = 0 (21)

Or after re-arranging:[
−ω0εa+ 2βḃ+

ω2
0h

2
a

]
cos(βt) +

[
−ω0εb− 2βȧ− ω2

0h

2
b

]
sin(βt) = 0 (22)

Now Eq (22) has a non-trivial solution if

−ω0εa+ 2βḃ+
ω2

0h

2
a = 0

ω0εb− 2βȧ− ω2
0h

2
b = 0

Or

ḃ− ε

2
a+

ω0h

4
a = 0

ȧ+
ε

2
b+

ω0h

4
b = 0

We assume a solution for a(t) = a0 exp(st) and b(t) = b0 exp(st). Now plug
into the above equations:

sb0 =

(
ε

2
− ω0h

4

)
a0 (23)

sa0 = −
(
ε

2
+
ω0h

4

)
b0 (24)
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Multiplying Eq (23) and (24) together:

s2a0b0 = (−ε
2

4
+
ω2

0h
2

16
)a0b0

s2 =
ω2

0h
2

16
− ε2

4
(25)

The growth rate is thus:

s =

√
ω2

0h
2

16
− ε2

4

For stable motion, we want s2 to be negative. For then, s is imaginary, and the
coefficients are bounded.

Stable for ε2 >
ω2

0h
2

4

Conversely, instability arises if s2 is positive. For then s is real, and the coeffi-
cients grow exponentially.

Unstable for ε2 <
ω2

0h
2

4
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Winter 2015 PHYS 200B HW Problem 01.03 Logan Howe

Problem: Compute the threshold for parametric instability in the presence of linear fric-
tional damping, as well as mismatch. For what range of mismatch ε will instability occur?

Solution: We should start by writing down Mathieu’s equation where linear frictional
damping means we have a term proportional to φ̇, i.e.

φ̈+ γφ̇+ ω2
0φ (1 + h cos 2ωt) = 0 (1)

where ω = ω0 + ε/2 is half the forcing frequency that results in the parametric resonance
and h = 4y0/`. A crucial brainwave that we must have is that “threshold” of instability
means that instead of posing periodic solutions of the form

φ(t) = a(t) cosωt+ b(t) sinωt (2)

where the coefficients depend on time and are allowed to blow up, we must instead set
the coefficients to constants: a(t) = a and b(t) = b. Now proceed to grind by plugging in
φ(t) = a cos(ωt) + b sin(ωt) into eqaution (1).

φ̈ = −aω2 cosωt− bω2 sinωt

φ̇ = ω (−a sinωt+ b cosωt)

=⇒ aω2 cosωt− bω2 sinωt+ γω (−a sinωt+ b cosωt)

+ aω2
0 cosωt+ bω2

0 sinωt+ ω2
0h cos 2ωt

(
cosωt+ bω2

0h sinωt
)

= 0.

Use the trig identity

cos 2ωt cosωt =
1

2
(cosωt+ cos 3ωt)

to separate into an on-resonance (cosωt) and off-resonance (cos 3ωt) term which we throw
away because it does not contribute to the instability. The goal now is to factor out the
cosωt and sinωt terms, plug back in ω = ω0 + ε/2, omit terms of orders ε2 and higher,
and solve the system of equations for the coefficients. The algebra is bad but if we note
that to lowest order in ε

ω2 = (ω0 + ε/2)2 = ω2
0 + ω0ε

and persevere we will find that(
−aω0ε+ γbω0 +

1

2
aω2

0h

)
cosωt−

(
bω0ε+ γaω0 +

1

2
bω2

0h

)
sinωt = 0. (3)

We have nontrivial solutions when the 2× 2 system of the coefficients has a 0 determinant.
Lets change ε → ε0 to denote this solution as the threshold frequency mismatch so for
any ε < ε0 we will have instability. In matrix form this equation would be, after dropping
an overall factor of ω0 and subbing in h = 4y0/`,

0 =

∣∣∣∣−ε0 + 1
2
ω0h γ

γ ε0 + 1
2
ω0h

∣∣∣∣ =

(
−ε0 +

1

2
ω0

)(
ε0 +

1

2
ω0

)
− γ2

1



Winter 2015 PHYS 200B HW Problem 01.03 Logan Howe

ε20 =
(ω0y0

`

)2

− γ2 . (4)

Thus, any ε < ε0 will cause instability. However, because there is linear damping the
amplitude y0 must be above a critical value as well. We find this by assuming perfect
frequency matching, i.e. by letting ε→ 0, and solving for y0,min:

y0,min =
γ`

ω0

. (5)

The physical interpretation is that is we are perfectly on resonance then we MUST drive
the oscillator with y0 > y0,min, otherwise the damping term prevents the parametric
instability.
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Sheena Patel
Phys200b: Theoretical Mechanics II

Problem Set 1

Problem 5
Consider the asymmetric top, with moments of inertia I1 < I2 < I3. Here 1, 2, 3 refer to the principal axes in a frame
for which the inertia tensor is diagonal. Using the Euler equations:

a.) Derive the equations of motion for Ω1(t), Ω2(t), and Ω3(t), the angular frequencies associated with axes 1, 2,
and 3.

Recall, from rigid body mechanics,

−→
N ext =

(
d
−→
L

dt

)
inertial

=

(
d
−→
L

dt

)
body

+
−→
Ω ×−→L = I

−̇→
Ω +

−→
Ω × (I

−→
Ω )

This results in the Euler equations, giving us equations of motion for Ω1(t), Ω2(t), and Ω3(t).

I1Ω̇1(t) = (I2 − I3)Ω2Ω3 + Next
1

I2Ω̇2(t) = (I3 − I1)Ω3Ω1 + Next
2

I3Ω̇3(t) = (I1 − I2)Ω1Ω2 + Next
3

Since there is no external torque on the top, Next = 0 and

I1Ω̇1(t) = (I2 − I3)Ω2Ω3

I2Ω̇2(t) = (I3 − I1)Ω3Ω1

I3Ω̇3(t) = (I1 − I2)Ω1Ω2

�

b.) Show that if Ω2 ∼= Ω0 while Ω1, Ω3 start from an infinitesimal perturbation, instability results. Show that
Ω1
∼= Ω0 or Ω3 ∼= Ω0 is stable.

First, let’s consider the case Ω2 ∼= Ω0. Let
−→
Ω = Ω0 ê2 +

−→
δΩ, where

−→
δΩ = (δΩ1, δΩ2, δΩ3).

The equations of motion become

I1δΩ̇1(t) = (I2 − I3)Ω0δΩ3 +O(δΩ2δΩ3)

I2δΩ̇2(t) = 0 +O(δΩ1δΩ3)

I3δΩ̇3(t) = (I1 − I2)Ω0δΩ1 +O(δΩ1δΩ2)

So, to first order in δΩi,

δΩ̈1(t) = Ω2
0
(I2 − I3)(I1 − I2)

I3 I1
δΩ1

δΩ̈3(t) = Ω2
0
(I1 − I2)(I2 − I3)

I1 I3
δΩ3

Let Ω2 = Ω2
0
(I1 − I2)(I2 − I3)

I1 I3
.

δΩ̈1(t) = Ω2δΩ1

δΩ̈3(t) = Ω2δΩ3

Since I1 < I2 < I3, I1 − I2 < 0 and I2 − I3 < 0, so Ω2 > 0 and δΩ1, δΩ3 have general solution c1eΩt + c2e−Ωt,
which increases exponentially with time, resulting in instability . So for Ω2 ∼= Ω0, perturbations in δΩ1, δΩ3 result in
instability.

�
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Next, consider the case Ω1
∼= Ω0. Here,

−→
Ω = Ω0 ê1 +

−→
δΩ, where

−→
δΩ = (δΩ1, δΩ2, δΩ3).

The equations of motion become
I1δΩ̇1(t) = 0 +O(δΩ2δΩ3)

I2δΩ̇2(t) = (I3 − I1)Ω0δΩ3 +O(δΩ1δΩ3)

I3δΩ̇3(t) = (I1 − I2)Ω0δΩ2 +O(δΩ1δΩ2)

So, to first order in δΩi,

δΩ̈2(t) = Ω2
0
(I3 − I1)(I1 − I2)

I3 I2
δΩ2 ≡ Ω2δΩ2

δΩ̈3(t) = Ω2
0
(I1 − I2)(I3 − I1)

I2 I3
δΩ3 ≡ Ω2δΩ3

Now, Ω2 < 0, so δΩ2, δΩ3 have general solution c1ei|Ω|t + c2e−i|Ω|t, which are oscillating solutions and result in
stable motion .

�

Similarly, consider the case Ω3 ∼= Ω0. Here,
−→
Ω = Ω0 ê3 +

−→
δΩ, where

−→
δΩ = (δΩ1, δΩ2, δΩ3).

The equations of motion become

I1δΩ̇1(t) = (I2 − I3)Ω0δΩ2 +O(δΩ2δΩ3)

I2δΩ̇2(t) = (I3 − I1)Ω0δΩ1 +O(δΩ1δΩ3)

I3δΩ̇3(t) = 0 +O(δΩ1δΩ2)

To first order in δΩi,

δΩ̈1(t) = Ω2
0
(I2 − I3)(I3 − I1)

I2 I1
δΩ1 ≡ Ω2δΩ1

δΩ̈2(t) = Ω2
0
(I3 − I1)(I2 − I3)

I1 I2
δΩ2 ≡ Ω2δΩ2

Just as in the last case, Ω2 < 0, so δΩ1, δΩ2 have general solution c1ei|Ω|t + c2e−i|Ω|t, which are oscillating solutions
and result in stable motion .

�

c.) What are the two conserved quantities which constrain the evolution in b.)?

The two conserved quantities are energy and the square of the angular momentum.

E = 1
2 (I1Ω2

1 + I2Ω2
2 + I3Ω2

3)

|−→L |2 = I2
1 Ω2

1 + I2
2 Ω2

2 + I2
3 Ω2

3

�
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