1)
a.)

The Lagrangian is given by:

1
L= 3m (9'52 + y2) — mgy
(1)

We can write the « and y components in terms of the angle, #, and and the
driving term:

y = l(1—cos(h)) (2)
x = Isin(f) + xo cos(wt) (3)

Taking the time derivate of Eq (1) and (2) and plugging into the Lagrangian:
1 . .
L= 3 (1292 — 2lwxof cos O sin(wt) + w?ad sin’ (wt)) — mgl(1 — cos(h))

Keeping only terms to the first power of w, we can find the equation of motion

for 6:
d(ory _oL
dt\ oo ) 00

d . .
7 {mZQG — milwzg cos(0) sin(wt)} = —mglsin(0) + mwlzl sin(6) sin(wt)

Rl +W7 mlw?zo cos(f) cos(wt) = —mgl sin () +W

mi?6 = —mygl sin(#) + mlw?zq cos() cos(wt)
2

b= —%sin(@) +2 l:”"

cos(#) cos(wt) (4)

We now assume that the motion, 6(¢), can be separated into fast and slow
components: 0 = + ©. I will use the notation that 6 corresponds to the slow
motion while © corresponds to the fast motion. We now plug our definition of
0 into Eq. (4) and expand in powers of 6:

. K _ -~ 2 _ ~
0+06 = —% sin(6 + ©) + ¥ o cos(f + ©) cos(wt)
= —% sin(f) — %@ cos(0) + d lxo cos(0) cos(wt) — d lon@ sin(6) cos(wt)
—_— Y
1 2 3 4

We can now average over the fast period. By doing so, all of the ”fast” terms
in the above equation will be approximately zero. We can see that term 1 is a
slow term as well as term 4. Term 4 is slow due to the beat phenomenon, which



we will see from the multiplication of © and cos(wt) in this term. Terms 2 and
3 are fast terms and will go to zero under averaging.

2

<0>= —% < sin(f) > —= I‘TO < & cos(wt) > sin(d) (5)

Switching over to the fast components:
2

éz;%équ(ﬁﬂwx

The first term went to zero as Q% << w?, where € is just the natural freq of
the oscillator, 1/g/l We can integrate this equation with respect to time twice,
arriving at:

% cos(f) cos(wt)

6= —967 cos(6) cos(wt) (6)

We plug this expression for O into Eq (5) to see:
2

< O cos(wt) >= e lxo < 7357 cos(0) cos(wt) cos(wt) > sin(f)
~ wz 2 _ _
< Ocos(wt) >=+ 2 0 < cos*(wt) > cos(f) sin(f) (7)
The average of cos?(wt) can be computed:
I 1
2 —_ —_ — = —
< cos”(wt) >= T/o (2 + 5 Cos(2wt)> dt 5
And so:
2 2 qg . = wzxg - =
<f>=0= -7 sin(0) + ST cos(0) sin(h) (8)
We can write Eq (8) in the form: & = — L (U), where U is the potential:
s d g & Tgw? 5z
0= ~ 3 [_l cos(f) — e sin” (9)
Eq (9) tells us then there the effective potential is:
2.2
_ 9 oy _ ToW” .25
Uett = -7 cos(f) — a2 St 0 (10)

Our goal is to find the extrema of this function Using a trig identity to reduce
the power of sin®(f) term and taking a spatial derivative:

Wett _ 9 50(6) —
o 1 412

Ut = (g xow cos( )sm
o~ \1 22

sin(20) =

_ 2¢l
# =0 or 7 or arccos (292)
Tow



The stability of these extrema are found by taking another spacial derivative.

d?Ug g x%wQ -
1 cos(f) — e cos(26)
For § =0
PU.g 2, 2
4" Uett g _ v (11)
ao? |,_, 1 212
Which is positive, and thus stable, if ¢ > 9323;2)2
For0=n
2 2, 2
d({eﬂ? _ 9 mw (12)
do? |s_. l 212

Which is always negative, and thus always unstable.
For 6 = arccos ( 2oL ):
./L’O(.d

dQUcﬁ‘ qg — 1’2w2 _
1 cos(f) — 312 [2c0s*(0) — 1]

and evaluating at this point:

d*Uet _9( 290\ r3w? 9 2gl 2 _q
doz |; 1 \wow? 212 T3w?
AU _ 292 z%wZ
doz |;  zdw? 202
Which is stable if:
r3w? 29°
212 T3w?

Thus we finally have:

2, 9
0 = 0 is a stable equilibrium point if % > xg;
and
= 291 r3w? 292
6 = arccos is a stable equilibrium point if >

While § = 7 is always unstable.



b.)

We can write the x and y components as:

x = Isin(f) + ro cos(wt)
y = lcos(f) + ro sin(wt)

Plugging this into our usual Lagrangian for a pendulum:
1 . .
L= 5m [(l@ cos(#) — row sin(wt))? + (row cos(wt) — lsin(ﬂ)ﬁ)z} — mgl(1 — cos(0)

1 : : .
L= 5m [l292 + 72w? — 2rgwlf sin(wt) cos(h) — 2rowll cos(wt) sin(ﬁ)} —mgl(1 — cos(9))

We can now find the equations of motion:

d [OL] 0L
dt [aé} EQ
mi?6 — rowlm (w cos(wt) cos(0) — 0 sin(wt) sin(#) — wsin(wt) sin(0) + 6 cos(wt) cos((‘)))
= —mglsin() + rowldm (sin(wt) sin() — cos(wt) cos(f))
(13)

We keep only to first order in w, dropping all higher order terms. Several
terms cancel, are we are left with:

mi?0 = —mgl sin(0) + row?Im(cos(wt) cos(h) — sin(wt) sin(0))
6= —% sin(f) + TO(;} (cos(wt) cos(#) — sin(wt) sin(h)) (14)

As in the previous problem, we assume we can write 6 = 6 + © where 6 is the
slow component and © is the fast component. Plugging this into Eq (14) and
expanding in powers of O:

2

646 = —%(sin(é) — O cos(h)) + row ((cos(é) — Osin(f)) cos(wt) — (sin(f) + © cos(f)) sin(wt))
We can average over the fast time scale, as before, which will leave only the
slow components. The fast components will be averaged to zero:

. ~ 2
0= —% sin(0) — TO;J

(< O cos(wt) > sin(f)+ < O sin(wt) > cos(é)) (15)

Switching over to the fast components:

= 5 | Tow? ) AN
(C) :;%@fecﬂ(ﬁj—i— i (cos(8) cos(wt) — sin(f) sin(wt)) (16)




We can easily integrate Eq (16) and find an expression for O:

~ r _ _
0= —70 (cos() cos(wt) — sin(f) sin(wt)) (17)

Plugging in this expression into the Eq (15) we can calculate the <> terms.
To save some computation, we know that any averaging term proportional to
sin(wt) cos(wt) will average to zero. Likewise, as seen above in part a), any term
proportional to sin?(wt) or cos?(wt) will average to 1/2. Simplifying, we arrive
at:

§ = —% sin(0) (18)

Our effective potential is thus:

Uett = —% cos(f)
and the system behaves as if there is NO motion of the pivot point. This gives
us the final result of the equilibrium position:

dU, " )
g;f = %sm(@) =0whenf =0orm
d*U,
dé;ff — %cos(&) e > 0 always
d*U, 5
dé;ﬁ — %cos(&) . < 0 always

’9_ = 0 is a stable equilibrium point. ‘

’ 6 = 7 is an unstable equilibrium point. ‘

2.)
We are given that the support is driven with y(¢) = yo cos(wt). We begin by

finding the Lagrangian:

1
L= %(3'32 +9%) — mgy

Writing x and y in terms of the angle 6 of the pendulum:

x = lsin(6)
y = lcos(f) + yo cos(wt)



We can plug this into the Lagrangian to get:
1 ) )
L= - [l202 + 2lyowb sin(0) sin(wt)] —mgl(1 — cos(6))

The equations of motion are therefore:

21120 + prilyow? sin(6) cos(wt) +W: —prigl sin(6) +W

.. 2

0+ %sin@ + yO;U sin(#) cos(wt) =0
If we set wi = g/l

7] 2 yow? .

0+ws |1+ cos(wt) | sin(f) =0

We are given that the driving frequency, w = 2wy + €. Thus we can write
the above equation as:

0+ w? [1 + 4% cos(wt)] sin @

We have used the fact that w? = (2wy + €)? = 4w? + dwoe + €2 ~ 4w? to first
order in €. A final approximation, the small angle approximation, and letting
h = 4yo /1 gives us the final equation:

0 + w2 [1+ hcos(wt)] =0 (19)

We can approach this problem but first finding solutions when h=0. This is
nothing but the S.H.O, with solution:

0(t) = acos(wpt) + bsin(wpt)

When we let h # 0, we expect the same general form of the solution except for
a slow time scale variation of the coefficients.

6(t) = a(t) cos((wo + 5)t) + b(#) sin(wo + 3)) (20)

Plugging this equation for 6 into Eq (19), and using (wo + §) = 3

dcos(Bt) — 2Basin(Bt) — B%acos(Bt) + Bsin(ﬂt) + 203 cos(Bt) — bB? sin(St)
= —wi [1 + hcos(wt)] (acos(Bt) + bsin(Bt))

Dropping the terms proportional to a and b:

—B2acos(Bt) — 2Basin(Bt) + 203 cos(Bt) — bB? sin(St)
= —wi [1 + hcos(wt)] (acos(Bt) + bsin(Bt))



We now notice that 5% = w + woe + O(?):

—(yg—i— woe)a cos(Bt) — 2Basin(Bt) + 203 cos(Bt) — b(yg—l— woe) sin(St)
= —wj [{ + hcos(wt)] (acos(Bt) + bsin(Bt))

Or after some rearranging:

—wope (acos(Bt) + bsin(St)) — 28 (('1 sin(ft) — l}cos(ﬁt))

+wih [a cos((2wo + €)t) cos(wp + %) + bcos((2wo + €)t) sin(

€
We use some trig identities to rewrite the terms in brackets in the above equa-
tion:
€ 1 € 1 3e
cos((2wg + €)t) cos(wy + 5) =3 cos((wo + i)t) ~3 cos((3wo + ?)t)
) € 1. € 1 . 3e
cos((2wp + €)t) sin(wg + 5) =-3 sin((wo + §)t) + 3 sin((3wo + —)t)

2

We only keep terms on resonance, dropping the third harmonic terms, which
allows us to write:

—woe (acos(ft) + bsin(Bt)) — 20 ((’1 sin(f5t) — bcos(ﬁt))

+wih [acos(Bt) — bsin(Bt)] = 0 (21)
Or after re-arranging:

. 2 2
—woea + 28b + w;ha] cos(ft) + {—woeb — 284 — wghb] sin(Bt) =0 (22)
Now Eq (22) has a non-trivial solution if

. 2n
—wpea + 26b + %a =0

2p
woeb — 2Ba — “%b —0

Or
€ woh
b—2 + 1 a=0
€ woh
b+ —b=0
a+2 + 1

We assume a solution for a(t) = agexp(st) and b(t) = by exp(st). Now plug
into the above equations:



Multiplying Eq (23) and (24) together:

2

272
9 € wih
bo = (—— + ——)aod
§7apbo (4+16)a00
2_wih® & (25)
16 4
The growth rate is thus:
wph? €
16 4

For stable motion, we want s? to be negative. For then, s is imaginary, and the
coefficients are bounded.

2h2
Stable for €2 > ol

Conversely, instability arises if s? is positive. For then s is real, and the coeffi-
cients grow exponentially.

2h2
Unstable for €? < ]




Winter 2015 PHYS 200B HW Problem 01.03 Logan Howe

Problem: Compute the threshold for parametric instability in the presence of linear fric-
tional damping, as well as mismatch. For what range of mismatch e will instability occur?

Solution: We should start by writing down Mathieu’s equation where linear frictional
damping means we have a term proportional to ¢, i.e.

¢+ vd+ wid (1 + hcos2wt) =0 (1)

where w = wp + €/2 is half the forcing frequency that results in the parametric resonance
and h = 4yo /. A crucial brainwave that we must have is that “threshold” of instability
means that instead of posing periodic solutions of the form

o(t) = a(t) coswt + b(t) sinwt (2)

where the coefficients depend on time and are allowed to blow up, we must instead set
the coefficients to constants: a(t) = a and b(t) = b. Now proceed to grind by plugging in
¢(t) = acos(wt) + bsin(wt) into eqaution (1).

¢ = —aw? cos wt — bw? sin wt

¢ = w (—asinwt + bcoswt)

= aw” coswt — bw? sinwt + yw (—asinwt + bcos wt)

+ awg cos wt + bwj sinwt + wih cos 2wt (coswt + bwgh sinwt) = 0.

Use the trig identity

1
cos 2wt cos wt = 3 (coswt + cos 3wt)

to separate into an on-resonance (coswt) and off-resonance (cos 3wt) term which we throw
away because it does not contribute to the instability. The goal now is to factor out the
coswt and sinwt terms, plug back in w = wy + €/2, omit terms of orders €2 and higher,
and solve the system of equations for the coefficients. The algebra is bad but if we note
that to lowest order in €

w? = (wo + €/2)? = W2 + woe

and persevere we will find that
Loy Loy .
—awge + ybwg + §aw0h coswt — | bwoe + yawg + §bw0h sinwt = 0. (3)

We have nontrivial solutions when the 2 x 2 system of the coefficients has a 0 determinant.
Lets change ¢ — ¢, to denote this solution as the threshold frequency mismatch so for
any € < ¢y we will have instability. In matrix form this equation would be, after dropping
an overall factor of wy and subbing in h = 4y,/¢,

_ +1 +1 2
= €0 20J0 €0 2000 Y

1

—€p + %woh vy

0=
‘ vy € + %woh




Winter 2015 PHYS 200B HW Problem 01.03 Logan Howe

i () -7 o

Thus, any € < ¢p will cause instability. However, because there is linear damping the
amplitude yo must be above a critical value as well. We find this by assuming perfect
frequency matching, i.e. by letting € — 0, and solving for Yo min:

v
min — T | b}
Yo, o (5)

The physical interpretation is that is we are perfectly on resonance then we MUST drive
the oscillator with 4o > ¥omin, otherwise the damping term prevents the parametric
instability.
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Sheena Patel
Phys200b: Theoretical Mechanics II
Problem Set 1

Problem 5
Consider the asymmetric top, with moments of inertia I; < I < I3. Here 1, 2, 3 refer to the principal axes in a frame
for which the inertia tensor is diagonal. Using the Euler equations:

a.) Derive the equations of motion for () (), O (t), and Q3(t), the angular frequencies associated with axes 1, 2,
and 3.

Recall, from rigid body mechanics,
— — .
Next — (4L _ (4L Y OXxLT =10+0x(10)
dt | dt
inertial body
This results in the Euler equations, giving us equations of motion for () (¢), O (t), and Q3(t).

Ly (1) = (I — I3)0205 + NP
L (t) = (I — [)Qs0q + NP
LOs(t) = (I — L) O + N5

Since there is no external torque on the top, N = 0 and

L (t) = (L — I3)n 03

Ly (t) = (I3 — ;)3

BO3(t) = (I — L)1y

b.) Show that if () = )y while )y, ()3 start from an infinitesimal perturbation, instability results. Show that
0 = Op or O3 = Q) is stable.

First, let’s consider the case () = (). Let 6 = 0pér + zﬁ, where (ﬁ = (60)1,00),60)3).
The equations of motion become
60 (t) = (I — I3) Q0603 + O(60260%3)
L6, (t) =0+ O(601503)
3503 (t) = (I; — ) Qp6Q + O(6Q16Q)

So, to first order in 6();,
(b — L)L — 12)(501

50 (1) = O 7

s6(t) = 3= 12})512 ~B)sa,
143

L — L)(L —I3)
L1 ‘

Let O = Qg(
o0 (1) = Q26O
603 (t) = 0%

Since <L < Iy [—L <0and L — I3 < 0,s0 Q® > 0and 60, 6Q3 have general solution clem + e,

which increases exponentially with time, resulting in | instability |. So for (), = )y, perturbations in 50}y, 6Q)3 result in

instability.
]



Next, consider the case () = (). Here, 6) = &y + (ﬁ, where (ﬁ = (601,80, 6Q)3).
The equations of motion become )
L6 (1) =04 O(802603)

12502(1‘) = (I3 — )O3 + O(60160)3)
135()3(1’) = (Il — 12)005(22 + 0(5015()2)

So, to first order in 6();,
(L—1h)(h — D)

o, (t) = O3 60, = 0250,
LI
.. L —0L)(I;—1T
50;(t) = Qg( 1= b) (s 1)503 = 0250,
LI
Now, O? < 0, so 6Q)y, 6Q3 have general solution clei‘mt + Cze_imlt, which are oscillating solutions and result in

stable motion |

%
Similarly, consider the case ()3 = ). Here, Q) = Qoé3 + (?), where (f) = (6Q)1,080),60)3).
The equations of motion become

11501 (t) = (12 — I3) 0080 + O(60260)3)
Lo, (t) = (I3 — 11)Q00 + O(60260%3)
13503(15) =0+ O0(6M0,)
To first order in 6();,

s (t) = 3 =B =) 50y 50,
LI
50 (1) = O3 (L —h)(2 13)502 =020,
L1
Just as in the last case, 0% <0,s0 6()q, 6 have general solution clei‘mt + Czefi‘mt, which are oscillating solutions

and result in | stable motion |.

]
c.) What are the two conserved quantities which constrain the evolution in b.)?
The two conserved quantities are energy and the square of the angular momentum.
E=1(LOF + LO3 + 03)
T2 = BOA + B3 + BO3
]



